VISHAL EDUCATION INSTITUTION

(Regd. & ISO 9001-2008 Certified)

UNIT-1

Operating System Overview

DEFINITION

Operating system acts as interface between the user and the computer hardware. They sit between the user and the hardware of the computer providing an operational environment to the users and application programs. For a user, therefore, a computer is nothing but the operating system running on it. It is an extended machine.

User does not interact with the hardware of a computer directly but through the services offered by OS. This is because the language that users employ is different from that of the hardware where as users prefer to use natural language or near natural language for interaction, the hardware uses machine language. Os takes instruction in the form of commands from the user and translates into machine understandable instructions, gets these instructions executed by CPU and translates the result back into user understandable form.

· OS is a resource allocate
· Manages all resources

· Decides between conflicting requests for efficient and fair resource use

 OS is a control program

· Controls execution of programs to prevent errors and improper use of the computer

COMPUTER SYSTEM SATRT UP

· Bootstrap program is loaded at power-up or reboot.
· Typically stored in ROM or EPROM, generally known as firmware.

· Initialized all aspects of system

· Loads operating system kernel and starts execution

COMPUTER SYSTEM ORGANIZATION

· One or more CPUs, device controllers connect through common bus providing access to shared memory.

· Concurrent execution of CPUs and devices competing for memory cycles.

· I/O devices and the CPU can execute concurrently.

· Each device controller is in charge of a particular device type.

· Each device controller has a local buffer.

· CPU moves data from/to main memory to/from local buffers.

· I/O is from the device to local buffer of controller.

· Device controller informs CPU that it has finished its operation by causing an interrupt.

[image: image52.png]

Fig Computer System Organization

COMPUTER SYSTEM STRUCTURE

· Computer system can be divided into four components

· Hardware : provides basic computing resources

· CPU, memory, I/O devices

· Operating system:

· Controls and coordinates use of hardware among various applications and users

Operating system goals

· Execute user programs and make solving user problems easier.

· Make the computer system convenient to use.

· Application programs :

· It define the ways in which the system resources are used to solve the computing problems of the users

· Word processors, compilers, web browsers, database systems, video games

· Users: People, machines, other computers

Four Components of a Computer System

[image: image2.png]user user user user
1 2 3 n
compiler assembler text editor database
system

system and application programs

operating system

computer hardware

Fig Extended machine view of operating system

OPERATING SYSTEM CLASSIFICATION

· All operating system contain the same components whose functionalities are almost the same. For instance, all the operating systems perform the functions of storage management, process management, protection of users from one-another, etc.
· Operating system in general, performs similar functions but may have distinguishing features. Therefore, they can be classified into different categories on different bases.

Different types of operating system

· Single user- Single Processing System:-

· It has a single processor, runs a single program and interacts with a single user at a time. The OS for this system is very simple to design and implement. Example: - MS-DOS

· Only one program resides in computer memory and it remains that till it is executed. It is also called uni-program OS. In this OS, the whole, memory space is allocated to one program to memory management’s not very difficult task to do. The CPU has to execute only 1 program at a time, so that CPU management also does not have any problem.

· In a single user OS, a single user can access the computer at a particular time. The computer which are based on this OS have a single processor and able to execute only a single program at a particular time. This system provides all the resources to the users all the time. The single user OS into following categories: -

Single user, single tasking:

· In a single user, single tasking OS, There is a single user to execute a program at a particular system.

· Example – MS-DOS

Single user, multitasking OS:

· In single user, multitasking OS a single user can execute multiple programs.

· Example – A user can program different programs such as making calculations in excel sheet, printing a word document & downloading into the file from internet at the same time.

[image: image3]
· Advantages of single user OS:-
· The CPU has to handle only one application program at a time so that process management is easy in this environment.

· Due to the limited number of programs allocation of memory to the process & allocation of resources to the process becomes any easy task to handle.

· Disadvantages of single user OS:-
· As the OS is handling one application at a time most of the CPU time is wasted, because it has to sit idle most of the time while executing a single program.

· Resources like memory, CPU are not utilized at the maximum.

Batch Processing Systems

· The main function of a batch processing system is to automatically keep executing one job to the next in batch. The main idea behind that batch processing system is to reduce the interface of the operator during the processor or execution of jobs by computer system. All functioned of batch processing system are carried out by program is known as batch monitor.

· The batch monitor is a permanent program that resides in the main memory. In other words, a batch monitor is responsible for controlling the environment of the system for smooth execution of the process. In batch processing system, turn around time is use to define the total time taken by a job in the execution. This time includes batch formation, time taken to print result 7the time required to physically sort the printed outputs that belongs to a different jobs. Another important terms used in batch processing system is job scheduling. It is a process of sequencing jobs to that.
Operating System Structure

· Multiprogramming needed for efficiency.

· Single user cannot keep CPU and I/O devices busy at all times.

· Multiprogramming organizes jobs (code and data) so CPU always has one to execute.

· A subset of total jobs in system is kept in memory.

· One job selected and run via job scheduling.

· When it has to wait (for I/O for example), OS switches to another job.

· Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing.

· Response time should be < 1 second.

· Each user has at least one program executing in memory process.

· If several jobs ready to run at the same time CPU scheduling.

· If processes don’t fit in memory, swapping moves them in and out to run.

· Virtual memory allows execution of processes not completely in memory.

Operating System and System Calls

· Process Management.
· A process is a program in execution. It is a unit of work within the system. Program is a passive entity, process is an active entity.

· Process needs resources to accomplish its task.
· CPU, memory, I/O, files.
· Initialization data.
· Process termination requires reclaim of any reusable resources.
· Single-threaded process has one program counter specifying location of next instruction to execute.
· Process executes instructions sequentially, one at a time, until completion.
· Multi-threaded process has one program counter per thread.
· Typically system has many processes, some user, some operating system running concurrently on one or more CPUs.
· Concurrency by multiplexing the CPUs among the processes / threads.
Memory Management

· All data in memory before and after processing

· All instructions in memory in order to execute

· Memory management determines what is in memory when

· Optimizing CPU utilization and computer response to users

· Memory management activities

· Keeping track of which parts of memory are currently being used and by whom

· Deciding which processes (or parts thereof) and data to move into and out of memory

· Allocating and deal locating memory space as needed

Memory Layout for Multiprogrammed System

[image: image4.png]512M

operating system

job 1

job 2

job 3

job 4

Storage Management

· OS provides uniform, logical view of information storage.
· Abstracts physical properties to logical storage unit - file.
· Each medium is controlled by device (i.e., disk drive, tape drive).
· Varying properties include access speed, capacity, and data-transfer rate, access method (sequential or random).
· File-System management

· Files usually organized into directories

· Access control on most systems to determine who can access what.
· OS activities include.
· Creating and deleting files and directories.
· Primitives to manipulate files and directories.
· Mapping files onto secondary storage.
· Backup files onto stable (non-volatile) storage media.
SYSTEM CALL

· Programming interface to the services provided by the OS.
· Typically written in a high-level language (C or C++).
· Mostly accessed by programs via a high-level Application Program Interface (API) rather than direct system call use.
· Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM).
· Why use APIs rather than system calls?
(Note that the system-call names used throughout this text are generic)

Operating System Structures

· Operating System Services

· User Operating System Interface

· System Calls

· Types of System Calls

· System Programs

· Operating System Design and Implementation

· Operating System Structure

· Virtual Machines

· Operating System Generation

· System Boot

OBJECTIVE

· To describe the services an operating system provides to users, processes, and other systems

· To discuss the various ways of structuring an operating system

· To explain how operating systems are installed and customized and how they boot

SERVICES OF OS

 One set of operating-system services provides functions that are helpful to the user:

· User interface - Almost all Operating systems have a User Interface (UI).
· Varies between Command Line (CLI), Graphics User Interface (GUI) and Batch.
· Program Execution - The system must be able to load a program into memory and to run that program, end execution, either normally or abnormally (indicating error)

· I/O operations - A running program may require I/O, which may involve a file or an I/O device.

· File-system manipulation - The file system is of particular interest. Obviously,
programs need to read and write files and directories, create and delete them, search them, list file Information, permission management.

· Communications – Processes may exchange information, on the same computer or between computers over a network. Communications may be via shared memory or through message passing (packets moved by the OS).
· Error detection – OS needs to be constantly aware of possible errors. It may occur in the CPU and memory hardware, in I/O devices, in user program. For each type of error, OS should take the appropriate action to ensure correct and consistent computing.
· Debugging facilities can greatly enhance the user’s and programmer’s abilities to efficiently use the system.
· Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing

· Resource allocation - When multiple users or multiple jobs running concurrently, resources must be allocated to each of them

· Many types of resources - Some (such as CPU cycles, main memory, and file storage) may have special allocation code, others (such as I/O devices) may have general request and release code.

· Accounting - To keep track of which users use how much and what kinds of
 computer resources.
· Protection and security - The owners of information stored in a multi-user or networked computer system may want to control use of that information, concurrent processes should not interfere with each other protection involves ensuring that all access to system resources is controlled. Security of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid access attempts. If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as strong as its weakest link.

SYSTEM CALL

· Programming interface to the services provided by the OS.
· Typically written in a high-level language (C or C++).
· Mostly accessed by programs via a high-level Application Program Interface (API) rather than direct system call use.
· Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM).
· Why use APIs rather than system calls?
(Note that the system-call names used throughout this text are generic)

TYPE OF SYSTEM CALL

· Process control

· File management

· Device management

· Information maintenance

· Communications

SYSTEM PROGRAM
· Provide a convenient environment for program development and execution

· Some of them are simply user interfaces to system calls; others are considerably more complex.
· File management - Create, delete, copy, rename, print, dump, list, and generally
 Manipulate files and directories.
· Status information.
· Some ask the system for info - date, time, amount of available memory, disk space, and number of users.
· Others provide detailed performance, logging, and debugging information.
· Typically, these programs format and print the output to the terminal or other output devices.
· Some systems implement a registry - used to store and retrieve configuration information.
SYSTEM BOOT

· Operating system must be made available to hardware so hardware can start it.
· Small piece of code – bootstrap loader, locates the kernel, loads it into memory, and starts it.
· Sometimes two-step process where boot block at fixed location loads bootstrap loader.
· When power initialized on system, execution starts at a fixed memory location.
· Firmware used to hold initial boot code.
UNIT – 2

Operating System Functions
Process Concept

· An operating system executes a variety of programs:

· Batch system – jobs

· Time-shared systems – user programs or tasks

· Textbook uses the terms job and process almost interchangeably

· Process – a program in execution; process execution must progress in sequential fashion

· A process includes:

· program counter

· stack
· data section

Process in Memory

[image: image5]
Process State

· As a process executes, it changes state
· new: The process is being created

· running: Instructions are being executed

· waiting: The process is waiting for some event to occur

· ready: The process is waiting to be assigned to a processor

· terminated: The process has finished execution

[image: image6]
Diagram of Process State

Process Control Block (PCB)

Information associated with each process

· Process state

· Program counter

· CPU registers

· CPU scheduling information

· Memory-management information

· Accounting information

· I/O status information

[image: image7]
 Process Control Block (PCB)

Process Scheduling Queues

· Job queue – set of all processes in the system

· Ready queue – set of all processes residing in main memory, ready and waiting to execute

· Device queues – set of processes waiting for an I/O device

· Processes migrate among the various queues

[image: image8]
Representation of Process Scheduling

Schedulers
· Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue

· Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU

· Short-term scheduler is invoked very frequently (milliseconds) ((must be fast)

· Long-term scheduler is invoked very infrequently (seconds, minutes) ((may be slow)

· The long-term scheduler controls the degree of multiprogramming

· Processes can be described as either:

· I/O-bound process – spends more time doing I/O than computations, many short CPU bursts

· CPU-bound process – spends more time doing computations; few very long CPU bursts.

Process Creation

· Parent process create children processes, which, in turn create other processes, forming a tree of processes

· Resource sharing

· Parent and children share all resources

· Children share subset of parent’s resources

· Parent and child share no resources

· Execution

· Parent and children execute concurrently

· Parent waits until children terminate

· Address space

· Child duplicate of parent

· Child has a program loaded into it

· UNIX examples

· fork system call creates new process

· exec system call used after a fork to replace the process’ memory space with a new program

[image: image9]
 Process Creation

Cooperating Processes

· Independent process cannot affect or be affected by the execution of another process

· Cooperating process can affect or be affected by the execution of another process

· Advantages of process cooperation

· Information sharing

· Computation speed-up

· Modularity

· Convenience

Context Switch

· When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process

· Context-switch time is overhead; the system does no useful work while switching

· Time dependent on hardware support

CPU Scheduling

Basic Concepts

· Maximum CPU utilization obtained with multiprogramming

· CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait

· CPU burst distribution

CPU Scheduler

· Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them

· CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

 4. Terminates

· Scheduling under 1 and 4 is non-preemptive
· All other scheduling is preemptive
Dispatcher

· Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:

· switching context

· switching to user mode

· jumping to the proper location in the user program to restart that program

· Dispatch latency – time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

· CPU utilization – keep the CPU as busy as possible

· Throughput – No. of processes that complete their execution per time unit

· Turnaround time – amount of time to execute a particular process

· Waiting time – amount of time a process has been waiting in the ready queue

· Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Optimization Criteria

· Max CPU utilization

· Max throughput

· Min turnaround time

· Min waiting time

· Min response time

First-Come, First-Served (FCFS) Scheduling

· Waiting time for P1 = 0; P2 = 24; P3 = 27

· Average waiting time: (0 + 24 + 27)/3 = 17

Shortest-Job-First (SJF) Scheduling

· Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time

· Two schemes:

· no preemptive – once CPU given to the process it cannot be preempted until completes its CPU burst

· Preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

· SJF is optimal – gives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF
Process
Arrival Time
Burst Time
 P1
 0.0
7

 P2
 2.0
 4

 P3
4.0
1

 P4
 5.0
4

· SJF (non-preemptive)

[image: image10]
· Average waiting time = (0 + 6 + 3 + 7)/4 = 4
Example of Preemptive SJF

Process
Arrival Time
Burst Time
P1 0.0 7

P2

 2.0
 4

P3

 4.0
 1

P4

 5.0
 4

· SJF (preemptive)

[image: image11]
· Average waiting time = (9 + 1 + 0 +2)/4 = 3
Priority Scheduling

· A priority number (integer) is associated with each process

· The CPU is allocated to the process with the highest priority (smallest integer (highest priority)

· Preemptive

· no preemptive

· SJF is a priority scheduling where priority is the predicted next CPU burst time

· Problem (Starvation – low priority processes may never execute

· Solution (Aging – as time progresses increase the priority of the process

Round Robin (RR)

· Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.

· If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

· Performance

· q large (FIFO

· q small (q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 20

Process
Burst Time

P1
 53

P2
 17

P3
 68

P4
 24

The Gantt chart is

[image: image12]
Typically, higher average turnaround than SJF, but better response
Multilevel Queue

· Ready queue is partitioned into separate queues:
foreground(interactive)background (batch).
· Each queue has its own scheduling algorithm

· foreground – RR

· background – FCFS

· Scheduling must be done between the queues

· Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.

· Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR

· 20% to background in FCFS

[image: image13]
Multilevel Queue Scheduling

Multilevel Feedback Queue

· A process can move between the various queues; aging can be implemented this way

· Multilevel-feedback-queue scheduler defined by the following parameters:

· Number of queues.
· Scheduling algorithms for each queue.
· Method used to determine when to upgrade a process.
· Method used to determine when to demote a process.
· Method used to determine which queue a process will enter when that process needs service.
Example of Multilevel Feedback Queue

· Three queues:

· Q0 – RR with time quantum 8 milliseconds

· Q1 – RR time quantum 16 milliseconds

· Q2 – FCFS

· Scheduling

· A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.

· At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

[image: image14]
Multiple-Processor Scheduling

· CPU scheduling more complex when multiple CPUs are available.
· Homogeneous processors within a multiprocessor.
· Load sharing.
· Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing.
Deadlock handling

[image: image15]
Bridge Crossing Example
· Traffic only in one direction.

· Each section of a bridge can be viewed as a resource.

· If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback).

· Several cars may have to be backed up if a deadlock occurs.

· Starvation is possible.

System model

· Resource types R1, R2, . . ., Rm.
· CPU cycles, memory space, I/O devices.
· Each resource type Ri has Wi instances.

· Each process utilizes a resource as follows:

· request

· use

· release

Deadlock Characterization Deadlock

Deadlock can arise if four conditions hold simultaneously.

· Mutual exclusion: only one process at a time can use a resource.

· Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other processes.

· No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task.

· Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is held by

· P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Resource-Allocation Graph
A set of vertices V and a set of edges E.

· V is partitioned into two types:

· P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

· R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

· request edge – directed edge P1 (Rj

· assignment edge – directed edge Rj (Pi
 Process

[image: image1.png]mouse keyboard printer monitor

== A2t
AN

USB controller

graphics
adapter

disk

&=
controller

memory

[image: image16]
 Resource Type with 4 instances

[image: image17]
· Pi requests instance of Rj
[image: image40.png]quantum = 8

quantum = 16

FCFS

[image: image18]
[image: image19]
· Pi is holding an instance of Rj

[image: image41.png]system processes

interactive processes

interactive editing processes

batch processes

E—

student processes

lowest priority

[image: image42.png]

[image: image20]
[image: image21] Rj

Resources Allocation Graph

[image: image22]
 Resource Allocation Graph With A Deadlock

[image: image23]
 Graph with A Cycle But No Deadlock

[image: image24]
Basic facts-:

· If graph contains no cycles (no deadlock.

· If graph contains a cycle (deadlock.
· If only one instance per resource type, then deadlock.

· If several instances per resource type, possibility of deadlock.

Methods for Handling Deadlocks

· Ensure that the system will never enter a deadlock state.

· Allow the system to enter a deadlock state and then recover.

· Ignore the problem and pretend that deadlocks never occur in the system; used by most operating systems, including UNIX.

Deadlock Prevention

Restrain the ways request can be made.

· Mutual Exclusion – not required for sharable resources; must hold for non-sharable resources.

· Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold any other resources.

· Require process to request and be allocated all its resources before it begins execution, or allow process to request resources only when the process has none.

· Low resource utilization; starvation possible.

No Preemption –

1. If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are released.

2. Preempted resources are added to the list of resources for which the process is waiting.

3. Process will be restarted only when it can regain its old resources, as well as the new ones that it is requesting.

4. Circular Wait – impose a total ordering of all resource types, and require that each process requests resources in an increasing order of enumeration.

Deadlock Avoidance

Requires that the system has some additional priori information available.

· Simplest and most useful model requires that each process declare the maximum number of resources of each type that it may need.

· The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circular-wait condition.

· Resource-allocation state is defined by the number of available and allocated resources, and the maximum demands of the processes.

Safe State

· When a process requests an available resource, system must decide if immediate allocation leaves the system in a safe state.

· System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes is the systems such that for each Pi, the resources that Pi can still request can be satisfied by currently available resources + resources held by all the Pj, with j < i.

· That is:

· If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished.

· When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and terminate.

· When Pi terminates, Pi +1 can obtain its needed resources, and so on.

Basic facts

· If a system is in safe state (no deadlocks.

· If a system is in unsafe state (possibility of deadlock.

· Avoidance (Ensure that a system will never enter an unsafe state.

[image: image25]
 Safe, Unsafe and Deadlock State

Avoidance algorithms
· Single instance of a resource type. Use a resource-allocation graph

· Multiple instances of a resource type. Use the banker’s algorithm

Resource-Allocation Graph Scheme
· Claim edge Pi (Rj indicated that process Pj may request resource Rj; represented by a dashed line.

· Claim edge converts to request edge when a process requests a resource.

· Request edge converted to an assignment edge when the resource is allocated to the process.

· When a resource is released by a process, assignment edge reconverts to a claim edge.

· Resources must be claimed a priori in the system.

[image: image26]
Resource-Allocation Graph

[image: image27]
 Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm
· Suppose that process Pi requests a resource Rj

· The request can be granted only if converting the request edge to an assignment edge does not result in the formation of a cycle in the resource allocation graph

Banker’s Algorithm

· Multiple instances.

· Each process must a priori claim maximum use.

· When a process requests a resource it may have to wait.

· When a process gets all its resources it must return them in a finite amount of time.

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

· Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj available.

· Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of resource type Rj.

· Allocation: n x m matrix. If Allocation [i,j] = k then Pi is currently allocated k instances of Rj.
· Need: n x m matrix. If Need [i,j] = k, then Pi may need k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Safety Algorithm

 Let Work and Finish be vectors of length m and n, respectively.
 1. Initialize:

 Work = Available

 Finish [i] = false for i = 0, 1, …, n- 1.
 2. Find and i such that both:

 (a) Finish [i] = false
 (b) Need i (Work

 If no such i exists, go to step 4.

 3. Work = Work + Allocation
 Finish[i] = true
 go to step 2.

 4. If Finish [i] == true for all i, then the system is in a safe state.

Resource-Request Algorithm for Process Pi
 Request = request vector for process Pi. If Request i [j] = k then process Pi wants

 k instances of resource type Rj.

1.
If Request i (Need i go to step 2. Otherwise, raise error condition, since process

 has exceeded its maximum claim.

2. If Request i (Available, go to step 3. Otherwise Pi must wait, since resources

 are not available.

3.
Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available – Request;

Allocation i = Allocation i + Request i;

Need i = Need i – Request i;

· If safe (the resources are allocated to Pi.

· If unsafe (Pi must wait, and the old resource-allocation state is restored
Example of Banker’s Algorithm

· 5 processes - P0 through P4;

· 3 resource types:

· A (10 instances),
· B (5instances), and
· C (7 instances).

· Snapshot at time T0:

 Allocation
Max
 Available

A B C
 A B C
 A B C

 P0
0 1 0
 7 5 3
 3 3 2

 P1
2 0 0 3 2 2

 P2
3 0 2
 9 0 2

 P3
2 1 1 2 2 2

 P4
0 0 2
 4 3 3
· The content of the matrix Need is defined to be Max – Allocation.

 Need
 A B C

P0
7 4 3

P1
1 2 2

P2
6 0 0

P3
0 1 1

P4
4 3 1

· The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria.

Example: P1 Request (1,0,2)
· Check that Request (Available (that is, (1,0,2) ((3,3,2) (true.

 Allocation
Need
Available
 A B C A B C
 A B C

P0
 0 1 0
7 4 3
 2 3 0

P1
 3 0 2
0 2 0

P2
 3 0 1
6 0 0

P3
 2 1 1
0 1 1

P4
 0 0 2
4 3 1

· Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety requirement.

· Can request for (3,3,0) by P4 be granted?

· Can request for (0,2,0) by P0 be granted?

Deadlock Detection

· Allow system to enter deadlock state

· Detection algorithm

· Recovery scheme

Unit-3

INTRODUCTION, BASIC OF
MEMORY MANAGEMENT

Objectives

 In the last two lectures, you learnt about deadlocks, their characterization and various
Deadlock-handling techniques. At the end of this lecture, you will learn about Memory management, swapping and concept of contiguous memory allocation. Memory Management is also known as Storage or Space Management.

Memory management involves

· Subdividing memory to accommodate multiple processes.
· Allocating memory efficiently to pack as many processes into memory as possible.
When is address translation performed?

1. At compile time.
· Primitive.

· Compiler generates physical addresses.

· Requires knowledge of where the compilation unit will be loaded.

· Rarely used (MSDOS .COM files).

2. At link-edit time (the “linker lab”)
· Compiler

· Generates relocatable addresses for each compilation unit.

· References external addresses.

· Linkage editor

· Converts the relocatable addr to absolute.

· Resolves external references.

· Misnamed ld by UNIX.

· Also converts virtual to physical addresses by knowing where the linked program will be loaded. Linker lab “does” this, but it is trivial since we assume the linked program will be loaded at 0.

· Loader is simple.

· Hardware requirements are small.

· A program can be loaded only where specified and cannot move once loaded.

· Not used much any more.

3. At load time
· Similar to at link-edit time, but do not fix the starting address.

· Program can be loaded anywhere.

· Program can move but cannot be split.

· Need modest hardware: base/limit registers.

· Loader sets the base/limit registers.

4. At execution time
· Addresses translated dynamically during execution.

· Hardware needed to perform the virtual to physical address translation quickly.

· Currently dominates.

· Much more information later.

MMU - Logical vs. Physical Address Space

· Concept of logical address space bound to a separate physical address space - central to proper memory management

· Logical (virtual) address – generated by the CPU

· Physical address – address seen by the memory unit

· Logical and physical addresses:

· Same in compile-time and load-time address-binding schemes

· Different in execution-time address-binding scheme

· Memory Management Unit: HW device that maps virtual to physical address

· Simplest scheme: add relocation register value to every address generated by process when sent to memory

 [image: image28.emf]
Dynamic Loading

· Routine is not loaded until it is called.

· Better memory-space utilization; unused routine is never loaded.

· Useful when large amounts of code are needed to handle infrequently occurring cases.

· No special support from the operating system is required; implemented through program design.

Dynamic Linking

· Linking postponed until execution time.

· Small piece of code, stub, used to locate the appropriate memory-resident library routine.

· Stub replaces itself with the address of the routine, and executes the routine.

· Operating system needed to check if routine is in processes’ memory address.

Overlays

· To handle processes larger than their allocated memory.
· Keep in memory only instructions and data needed at any given time.
 Implemented by user, no special support needed from OS, programming design is

 Complex. Overlay for a two-pass assembler:

Pass 1 70KB

Pass 2 80KB

Symbol Table 20KB

Common Routines 30KB

Total 200KB

Two overlays: 120 + 130KB

 [image: image29.emf]
The Need for Memory Management

Main memory is generally the most critical resource in a computer system in terms of the speed at which programs run and hence it is important to manage it as efficiently as possible.

The requirements of memory management are

· Relocation

· Protection

· Sharing

· Logical Organization

· Physical Organization

What is meant by relocation?

· Programmer does not know where the program will be placed in memory when it is executed

· While the program is executing, it may be swapped to disk and returned to main memory at a different location (relocated)

· Memory references must be translated in the code to actual physical memory address

What is meant by protection?

· Processes should not be able to reference memory locations in another process without permission

· Impossible to check absolute addresses in programs since the program could be relocated

· Must be checked during execution

 Operating system cannot anticipate all of the memory references a program will make

What does sharing mean?

· Allow several processes to access the same portion of memory

· Better to allow each process (person) access to the same copy of the program rather than have their own separate copy

What does logical organization of memory mean?

· Programs are written in modules

· Modules can be written and compiled independently

· Different degrees of protection given to modules (read-only, execute-only)

· Share modules

What does physical organization of memory mean?

· Memory available for a program plus its data may be insufficient

· Overlaying allows various modules to be assigned the same region of memory

· Programmer does not know how much space will be available

Swapping

Swapping is the act of moving processes between memory and a backing store. This is done to free up available memory. Swapping is necessary when there are more processes than available memory. At the coarsest level, swapping is done a process at a time. That is, an entire process is swapped in/out.

[image: image30.emf]
 The various memory management schemes available

There are many different memory management schemes. Selection of a memory management scheme for a specific system depends on many factors, especially the hardware design of the system. A few of the schemes are given here:

· Contiguous, Real Memory Management System

· Non-contiguous Real Memory Management System

· Non-contiguous, Virtual Memory Management System

OPERATING SYSTEM

In this lecture, you will learn about the contiguous memory management scheme. You will also learn about virtual memory and concept of swapping.

First let me explain what swapping means. You are all aware by now that for a process to be executed, it must be in the memory. Sometimes, however, a process can be swapped (removed) temporarily out of the memory to a backing store (such as a hard disk) and then brought back into memory for continued execution.

Let me explain with an example:

[image: image31.emf]
Consider a multiprogramming environment with a round robin CPU scheduling algorithm. When a quantum (time-slice) expires, the memory manger will start to swap out processes that just finished, and to swap in another process to the memory space that has been freed. In the meantime, the CPU scheduler will allocate a time slice to some other process in memory. Thus when each process finishes its quantum, it will be swapped with another process.

Are there any constraints on swapping?

Yes, there are. If you want to swap a process, you must be sure that it is completely idle. If a process is waiting for an I/O operation that is asynchronously accessing the user memory for I/O buffers, then it cannot be swapped. Having learnt about the basics of memory management and concept of swapping, we will now turn our attention to the contiguous memory management scheme.

What is the meaning of the term contiguous?

Contiguous literally means adjacent. Here it means that the program is loaded into a series of adjacent (contiguous) memory locations.

In contiguous memory allocation, the memory is usually divided into two partitions, one for the OS and the other for the user process.

 [image: image32.emf]
At any time, only one user process is in memory and it is run to completion and then the next process is brought into the Memory. This scheme is sometimes referred to as the Single Contiguous Memory Management.

What are the advantages and disadvantages of this Scheme?

First, let us look at the advantages:

· Starting physical address of program is known at compile time

· Executable machine code has absolute addresses only. They need not be changed/translated at execution time

· Fast access time as there is no need for address translation

· Does not have large wasted memory

· Time complexity is small

The disadvantage is that, it does not support multiprogramming and hence no concept of sharing.

What about protection?

Since there is one user process and the OS in the memory, it is necessary to protect the OS code from the user code. This is achieved through two mechanisms:

· Use of Protection Bits

· Use of Fence Register

Protection Bits:

· One bit for each memory block

· The memory block may belong to either user process or the OS

· Size of memory block should be known

· The bit is 0 if the word belongs to OS

· The bit is 1 if the word belongs to user process

A mode bit in the h/w indicates if system is executing in

Privileged mode or user mode.

· If mode changes, the h/w mode bit is also changed automatically.

· If user process refers to memory locations inside OS area, then the protection bit for the referred word is 0 and the h/w mode bit is ‘user mode’. Thus user process is prevented from accessing OS area.

· If OS makes a reference to memory locations being used by a user process then the mode bit = ‘privileged’ and the protection bit is not checked at all.

Current mode bit prot. Bit access status

Process

USER u-mode 0 OS N

USER u-mode 1 user Y

OS p-mode 1 user Y

OS p-mode 0 OS Y

Fence Register

Similar to any other register in the CPU

Contains address of the ‘fence’ between OS and the user process (see Fig. 2)

Fence Register value = P

For every memory reference, when final address is in MAR (Memory Address Register), it is compared with Fence Register value by h/w thereby detecting protection violations.
OPERATING SYSTEM

[image: image33.emf]
 FENCE
In a multi-programming environment, where more than one process is in the memory, we have the fixed-partition scheme. In this scheme,

· Main memory is divided into multiple partitions

· Partitions could be of different sizes but ‘fixed’ at the time of system generation

· Could be used with or without ‘swapping’ and ‘relocation’

· To change partition sizes, system needs to be shut down and generated again with a new partition size

Objectives

In the last lecture, you have learned about memory management, swapping and concept of contiguous memory allocation. In this lecturer you are going to learn about how OS manage the memory partitions.

So how does the OS manage or keep track of all these partitions?

In order to manage all the partitions,

The OS creates a Partition Description Table (PDT)Initially all the entries in PDT are marked as ‘FREE’, When a partition is loaded into one of the partitions, the PCB of each process contains the Id of the partition in which the process is running.

‘Status’ column is changed to ‘ALLOC’

[image: image34.emf]
How are the partitions allocated to various processes?

The sequence of steps leading to allocation of partitions to processes is given below:

· The long-term scheduler of the process manager decides which process is to be brought into memory next.

· It finds out the size of the program to be loaded by consulting the Information Manager of the OS (the compiler keeps the size of the program in the header of the executable code).
· It then makes a request to the ‘partition allocate routine’ of the memory manager to allocate free partition of appropriate size.

· It now loads the binary program in the allocated partition

 (address translation may be necessary).
· It then makes an entry of the partition-id in the PCB before the PCB is linked to chain of ready processes by using the Process Manager module.

· The routine in the Memory Manager now marks the status of that partition as allocated.

· The Process Manager eventually schedules the process can a process be allocated to any partition? The processes are allocated to the partitions based on the allocation policy of the system. The allocation policies are:

· First Fit

· Best Fit

· Worst Fit

· Next Fit

 Let me explain this with a simple example:

[image: image35.emf]
 Refer to figure above.Free partitions are 1 and 4.So, which partition should be

 allocated to a new process of size 50K?

 First Fit and Worst Fit will allocate Partition 1 while Best Fit will allocate

 Partition 4.

Do you know why?

In first fit policy, the memory manager will choose the first available partition that can accommodate the process even though its size is more than that of the process. In worst fit policy, the memory manager will choose the largest available partition that can accommodate the process.

In best-fit policy, the memory manager will choose the partition

That is just big enough to accommodate the process

Are there any disadvantages of this scheme?

Yes. This scheme causes wastage of memory, referred to as fragmentation.

Let me explain with an example:

Suppose there is a process, which requires 20K of memory. There is a partition of size 40K available. Assuming that the system is following the First-fit policy, then this partition would be allocated to the process. As a result, 20K of memory within the partition is unused. This is called internal fragmentation.

[image: image36.emf]
Now consider the same 20K process. This time, though there are three partitions of 10K, 5K and 16K available. None of them are large enough to accommodate the 20K process. There are no other smaller processes in the queue. Hence these three partitions remain unused. This is waste of memory and is referred to as external fragmentation.

[image: image37.emf]
[image: image38.emf]
How do you ensure protection of processes in such a scheme?

Protection can be achieved in two ways:

· Protection Bits (used by IBM 360/370 systems).
· Limit Register.
Protection Bits:

· Divide the memory into 2 KB blocks.

· Each block has 4 bits reserved for protection called the ‘key’.

· Size of each partition had to be multiple of such 2K blocks.

· All the blocks associated with a partition allocated to a process are given the same key.

So how does this mechanism work?

Let me explain with the following example:

Consider a physical memory of 64 KB. Assume each block is of 2KB.

· Total No. of blocks = 64/2 = 32 blocks

· ‘Key’ associated with each block is 4 bits long

· ‘Key string’ for 32 blocks is therefore 128 bits long

· System administrator defines a max of 16 partitions of different sizes (out of the available 32 blocks)

· Each partition is then given a protection key in the range

0000 to 1111

Now a process is loaded into a partition

· ‘Protection key’ for the partition is stored in the PSW

(Program Status Word).

· The process makes a memory reference in an instruction.

· The resulting address and the block are computed.

· The 4-bit protection key for that block is extracted from the protection-key string.

· It is then tallied with the value in PSW.

· If there is a match, then fine!

· Else the process is trying to access an address belonging to some other partition.

What are the disadvantages of this mechanism?

· Memory wastage due to internal fragmentation

· Limits maximum number of partitions (due to key length)

· Hardware malfunction may generate a different address but in the same partition - scheme fails!!

Limit Register

The Limit Register for each process can be stored in the PCB and can be saved/restored during context switch.

· If the program size were 1000, logical addresses generated would be 0 to 999

· The Limit Register therefore is set to 999

· Every ‘logical’ or ‘virtual’ address is checked to ensure that it is <= 999 and then added to base register. If not, then hardware generates an error and process is aborted

[image: image39.emf]
VIRTUAL MEMORY- INTRODUCTION, PAGING

Objectives

In the last lecture, you learnt about memory management, Swapping and the contiguous memory management scheme. In this lecture, you will get to know about non-contiguous

Memory management scheme and the concept of Paging and Segmentation.
Why Segmentation?

1. Pages are of a fixed size

In the paging scheme we have discussed, pages are of a fixed size, and the division of a process’s address space into pages is of little interest to the programmer. The beginning of a new page comes logically just after the end of the previous page.

2. Segments are of variable sizes

An alternate approach, called segmentation, divides the process’s address space into a number of segments - each of variable size. A logical address is conceived of as containing a segment number and offset within segment. Mapping is done through a segment table, which is like a page table except that each entry must now store both a physical mapping address and a segment length (i.e. a base register and a bounds register) since segment size varies from segment to segment.

3. No (or little) internal fragmentation, but we now have external fragmentation

Whereas paging suffers from the problem of internal fragmentation due to the fixed size pages, a segmented scheme can allocate each process exactly the memory it needs (or very close to it - segment sizes are often constrained to be multiples of some small unit such as 16 bytes.) However, the problem of external fragmentation now comes back, since the available spaces between allocated segments may not be of the right sizes to satisfy the needs of an incoming process. Since this is a more difficult problem to cope with, it may seem, at first glance, to make segmentation a less desirable approach than paging.

4. Segments can correspond to logical program units

However, segmentation has one crucial advantage that pure paging does not. Conceptually, a program is composed of a number of logical units: procedures, data structures etc. In a paging scheme, there is no relationship between the page boundaries and the logical structure of a program. In a segmented scheme, each logical unit can be allocated its own segment.

1. Example with shared segments

Example: A Pascal program consists of three procedures plus a main program. It uses the standard Pascal IO library for read, write etc. At runtime, a stack is used for procedure activation records. This program might be allocated memory in seven segments:

· One segment for the main routine.

· Three segments, one for each procedure.

· One segment for Pascal library routines.

· One segment for global data.

· One segment for the runtime stack.

2. Several user programs can reference the same segment

Some of the segments of a program may consist of library code shareable with other users. In this case, several users could simultaneously access the same copy of the code. For example, in the above, the Pascal library could be allocated as a shared segment. In this case, each of the processes using the shared code would contain a pointer the same physical memory location.

Segment table

user A

Segment table

user B

Segment table

user C

Ptr to private code Ptr to private code Ptr to private code

Ptr to private code Ptr to shared code Ptr to private code

Ptr to shared code Ptr to private code Ptr to private code

Ptr to private code Ptr to shared code

Ptr to private code Ptr to private code

This would not be possible with pure paging, since there is no one-to-one correspondence between page table entries and logical program units.

3. Protection issues

Of course, the sharing of code raises protection issues. This is most easily handled by associating with each segment table entry an access control field - perhaps a single bit. If set, this bit might allow a process to read from the segment in question, but not to write to it. If clear, both read and write access might be allowed. Now, segments that correspond to pure code (user written or library) are mapped read only. Data is normally mapped read-write. Shared code is always mapped read only; shared data might be mapped read-write for one process and read only for others.

What is segmentation?

In paging, the user’s view of memory and the actual physical memory are separated. They are not the same. The user’s view is mapped onto the physical memory.

A program is program is a collection of segments. A segment is a logical unit such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

Segmentation Architecture

Logical address consists of a two tuple:

<Segment-number, offset>

· Segment table – maps two-dimensional physical addresses; each table entry has: base – starting physical address of segments in memory limit – length of the segment

· Segment-table base register (STBR) points to the segment table’s location in memory

· Segment-table length register (STLR) indicates number of segments used by a program; segment number s is legal if s < STLR.
· Allocation: first fit/best fit and get external fragmentation.
· Protection – easier to map; associated with each entry in segment table: validation bit = 0 Þ illegal segment

· Read/write/execute privileges.
· Protection bits associated with segments; code sharing occurs at segment level.

· Since segments vary in length, memory allocation is a dynamic storage-allocation problem.

· A segmentation example is shown in the following diagram.
What is user’s view of memory?

The user of a system does not perceive memory as a linear array of bytes. The user prefers to view memory as a collection of variable sized segments with no necessary ordering among segments.

Let me explain this with an example:

Consider how you think of a program when you are writing it. You think of it as a main program with set of subroutines, procedures, functions, or variables. Each of these modules is referred to by a name. You are not concerned about where in memory these modules are placed. Each of these segments is of variable length and is intrinsically defined by the purpose of the segment in the program.

Thus segmentation is a memory management scheme that supports this user view of memory. Thus a logical address space is a collection of segments with each segment having a name and length.

What is a 2-d address?

· In paging, a 1-d virtual address and a 2-d address would be exactly same in binary form as page size is an exact power of

· In segmentation, segment size is unpredictable. Hence we need to express the address in 2-d form explicitly.

· A system implementing segmentation needs to have a different address format and a different architecture to decode the address

Segmentation with Paging

· The Intel Pentium uses segmentation with paging for memory management, with a two-level paging scheme.

What are the advantages and disadvantages of segmentation?

We will first look at the advantages:

1.
The page faults are minimized as the entire segment is present in the memory. Only access violations need to be trapped.

2.
No internal fragmentation as the segment size is customized for each process.

And now the disadvantages:

1.
Allocation/reallocations sequences result in external fragmentation that needs a periodic pause for compaction to take place

Review Questions

1.
How does paging differ from segmentation?

2.
Describe the mechanism of translating a logical address to physical address in segmentation.

VIRTUAL MEMORY- INTRODUCTION, PAGING

Objectives

In the last lecture, you learnt about memory management, swapping and the contiguous memory management scheme. In this lecture, you will get to know about Virtual Memory Virtual memory is a memory management technique that allows the execution of processes that may not be completely in main memory and do not require contiguous memory allocation. The address space of virtual memory can be larger than that physical memory.

Advantages:

· Programs are no longer constrained by the amount of physical memory that is available
· Increased degree of multiprogramming
· Less overhead due to swapping

Why Do We Need Virtual Memory?

Storage allocation has always been an important consideration in computer programming due to the high cost of main memory and the relative abundance and lower cost of secondary storage. Program code and data required for execution of a process must reside in main memory to be executed, but main memory may not be large enough to accommodate the needs of an entire process. Early computer programmers divided programs into sections that were transferred into main memory for a period of processing time. As the program proceeded, new sections moved into main memory and replaced sections that were not needed at that time. In this early era of computing, the programmer was responsible for devising this overlay system.

As higher level languages became popular for writing more complex programs and the programmer became less familiar with the machine, the efficiency of complex programs suffered from poor overlay systems. The problem of storage allocation became more complex.

Two theories for solving the problem of inefficient memory management emerged — static and dynamic allocation. Static allocation assumes that the availability of memory resources and the memory reference string of a program can be predicted. Dynamic allocation relies on memory usage increasing and decreasing with actual program needs, not on predicting memory needs.

Program objectives and machine advancements in the ’60s made the predictions required for static allocation difficult, if not impossible. Therefore, the dynamic allocation solution was generally accepted, but opinions about implementation were still divided. One group believed the programmer should continue to be responsible for storage allocation, which would be accomplished by system calls to allocate or dellocate memory. The second group supported automatic storage allocation performed by the operating system, because of increasing complexity of storage allocation and emerging importance of multiprogramming. In 1961, two groups proposed a one-level memory store. One proposal called for a very large main memory to alleviate any need for storage allocation. This solution was not possible due to very high cost.

The second proposal is known as virtual memory

Definition

Virtual memory is a technique that allows processes that may not be entirely in the memory to execute by means of automatic storage allocation upon request. The term virtual memory refers to the abstraction of separating LOGICAL memory—memory as seen by the process—from PHYSICAL memory—memory as seen by the processor. Because of this separation, the programmer needs to be aware of only the logical memory space while the operating system maintains two or more levels of physical memory space.

The virtual memory abstraction is implemented by using secondary storage to augment the processor’s main memory.

Data is transferred from secondary to main storage as and when

necessary and the data replaced is written back to the secondary

Storage according to a predetermined replacement algorithm. If the data swapped is designated a fixed size, this swapping is called paging; if variable sizes are permitted and the data is split along logical lines such as subroutines or matrices, it is called Segmentation. Some operating systems combine segmentation and paging. The diagram illustrates that a program generated address (1) or” logical address” consisting of a logical page number plus the location within that page (x) must be interpreted or “mapped” onto an actual (physical) main memory address by the operating System using an address translation function or mapper (2). If the page is present in the main memory, the mapper substitutes.
The physical page frame number for the logical number (3). If the mapper detects that the page requested is not present in main memory, a fault occurs and the page must be read into a frame in main memory from secondary storage (4, 5).

What does the Mapper do?

The mapper is the part of the operating system that translates the logical page number generated by the program into the physical page frame number where the main memory holds the page. This translation is accomplished by using a directly indexed table called the page table which identifies the location of all the program’s pages in the main store. If the page table reveals that the page is, in fact, not resident in the main memory, the mapper issues a page fault to the operating system so that execution is suspended on the process until the desired page can be read in from the secondary store and placed in main memory.

The mapper function must be very fast if it is not to substantially increase the running time of the program. With efficiency in mind, where is the page table kept and how is it accessed by the mapper? The answer involves associative memory.

Virtual memory can be implemented via:

· Demand paging

· Demand segmentation

What is demand paging?

Demand paging is similar to paging with swapping. Processes normally reside on the disk (secondary memory). When we want to execute a process, we swap it into memory. Other than swapping the entire process into memory, however, we use lazy swapper.

What is a lazy swapper?

A lazy swapper never swaps a page into memory unless that page will be needed. Since we are now viewing a process as a sequence of pages rather than one large contiguous address space, the use of the term swap is technically incorrect. A swapper manipulates entire processes whereas a pager is concerned with the individual pages of a process. It is correct to use the term pager in connection with demand paging.

So how does demand paging work?

Whenever a process is to be swapped in, the pager guesses which pages will be used before the process is swapped out again. So instead of swapping in the whole process, the pager brings only those necessary pages into memory. Here, I would like to add that demand paging requires hardware support to distinguish between those pages that are in memory and those that are on the disk.

Let me give you an example. Suppose you need white paper for doing your assignment. You could get it in two ways. In the first method, you will purchase about 500 sheets of paper. By the time you complete your assignment, you would have used only 100 sheets! So you are wasting 400 sheets of paper. In the second method, you could get 10 sheets of paper to start with and later on, as and when required, you could demand additional sheets of paper. This way, you will not be wasting money.

You talked about hardware support being required for demand paging. How does this support work?

An extra bit called the valid-invalid bit is attached to each entry in the page table. This bit indicates whether the page is in memory or not. If the bit is set to invalid, then it means that the page is not in memory. On the other hand, if the bit is set to valid, it means that the page is in memory. The following figure illustrates this:

What happens if a process tries to use a page that was not brought into memory?

If you try to access a page that is marked invalid (not in memory), then page fault occurs.

How do you handle such page faults?

Upon page fault, the required page brought into memory by executing the following steps:

1.
Check an internal table to determine whether the reference was valid or invalid memory access.

2.
If invalid, terminate the process. If valid, page in the required page

3.
Find a free frame (from the free frame list).

4.
Schedule the disk to read the required page into the newly allocated frame

5.
Modify the internal table to indicate that the page is in memory

6.
Restart the instruction interrupted by page fault

What is the advantage of demand paging?

Demand paging avoids reading into memory pages that will not be used anyway. This decreases the swap time and also the physical memory needed.

We saw that whenever the referenced page is not in memory, it needs to be paged in. To start with, a certain number of frames in main memory are allocated to each process. Pages (through demand paging) are loaded into these frames. What happens when a new page needs to be loaded into memory and there are no free frames available? Well, the answer is simple. Replace one of the pages in memory with the new one. This process is called page replacement.

Virtual memory basics

A. Virtual memory is an extension of paging and/or segmentation

The basic implementation of virtual memory is very much like paging or segmentation. In fact, from a hardware standpoint, virtual memory can be thought of as a slight modification to one of these techniques. For the sake of simplicity, we will discuss virtual memory as an extension of paging; but the same concepts would apply if virtual memory were implemented as an extension of segmentation.

B. Page table used to translate logical to physical addresses

Recall that in a paging scheme each process has a page table which serves to map logical addresses generated by the process to actual physical addresses. The address translation process can be described as follows:

1.
Break the logical address down into a page number and an offset.

2.
Use the page number as an index into the page table to find the corresponding frame number.

3.
Using the frame number found there, generate a physical address by concatenating the frame number and the offset from the original address.

Example: suppose the page table for a process looks like this. Assume that the page size is 256 bytes, that logical addresses are 16 bits long, and that physical addresses are 24 bits long. (All numbers in the table are hexadecimal):

A logical address 02FE would be translated into the physical address 01A0FE.

C .Security in a paging system

In a paging system, one security provision that is needed is a check to be sure that the page number portion of a logical address corresponds to a page that has been allocated to the process. This can be handled either by comparing it against a maximum page number or by storing a validity indication in the page table. This can be done by providing an additional bit in the page table entry in addition to the frame number. In a paging system, an attempt to access an invalid page causes a hardware trap, which passes control to the operating system. The OS in turn aborts the process.

D Situations that cause traps to the Operating System

In a virtual memory system, we no longer require that all of the pages belonging to a process be physically resident in memory at one time. Thus, there are two reasons why a logical address generated by a process might give rise to a hardware trap:

1. Violations
The logical address is outside the range of valid logical addresses for the process. This will lead to aborting the process, as before. (We will call this condition a memory management violation.)

2. Page Faults
The logical address is in the range of valid addresses, but the corresponding page is not currently present in memory, but rather is stored on disk. The operating system must bring it into memory before the process can continue to execute. (We will call this condition a page fault).

E. Need a paging device to store pages not in memory

In a paging system, a program is read into memory from disk all at once. Further, if swapping is used, then the entire process is swapped out or in as a unit. In a virtual memory system, processes are paged in/out in a piece-wise fashion. Thus, the operating system will need a paging device (typically a disk) where it can store those portions of a process which are not currently resident.

1.
When a fault for a given page occurs, the operating system will read the page in from the paging device.

2.
Further, if a certain page must be moved out of physical memory to make room for another being brought in, then the page being removed may need to be written out to the

Paging

Paging device first. (It need not be written out if it has not been altered since it was brought into memory from the paging device.)

3.
When a page is on the paging device rather than in physical memory, the page table entry is used to store a pointer to the page’s location on a the paging device.

F.
Virtual memory has an impact on CPU scheduling

In a virtual memory system, the hardware can behave in basically the same way as for paging. However, the operating system no longer simply aborts the process when the process accesses an invalid page. Instead, it determines which of the above two reasons caused the trap. If it is the latter, then the operating system must initiate the process of bringing in the appropriate page. The process, of course, must be placed into a wait state until this is completed. So our set of possible process states must be extended from:

RUNNING

READY

WAITING for IO to complete

to:

RUNNING

READY

WAITING for IO to complete

WAITING for a page to be brought in

(Note, though, that a page wait is in reality just another form of IO wait, except that here the reason for the wait is not an explicit IO instruction in the process.)

G. Hardware support beyond that for paging along is required for virtual memory

Though the burden of recognizing and handling page faults falls on the operating system, certain provisions must be present in the hardware that are not needed with simple paging:

1. A page fault could occur while a single instruction is being carried out

The ability to restart an instruction that caused a fault in midstream. This can be tricky if the instruction accesses large blocks of memory - e.g. a block move that copies a character string en masse.

2. Page table entry should include a “dirty” bit

Though it is not strictly necessary, it is desirable to include a “written-in” bit in the page table entry, along with the valid bit noted above. This bit is set if any location in the page has been modified since it was brought into physical memory. This bit comes into play when the operating system finds it necessary to take the frame away from a page to make room for a new page being faulted in. If the old page has not been written in, then it need not be written back to disk, since it is the same as the copy on disk that was brought in originally.

3. May want a bit to indicate that a page has been accessed

Some implementations also require a per-page accessed bit that is set whenever any access (read or write) to the page occurs. This can be used to help decide which pages are no longer being actively used and so can be paged out to make room for new pages coming in. Not all memory management strategies require this, however.

Virtual memory design issues

A. Policy for bringing pages into memory

1. When does the OS decide to bring a page in?

We have already noted that, in general, only a portion of the pages belonging to a given process will actually be resident in physical memory at any given time. Under what circumstances is a given page brought in from the paging device?

2. Demand paging

The simplest policy is demand paging. Simply stated, under demand paging, a given page is only brought into memory when the process it belongs to attempts to access it. Thus, the number of page faults generated by a process will at least be equal to the number of pages it uses. (The number of faults will be higher if a page that has been used is removed from memory and then is used again.) In particular, when a process starts running a program there will be a period of time when the number of faults generated by the process is very high:

a. Page faults occur one-by-one as program begins running

To start running the program, the CPU PC register is set to the first address in the program. Immediately, a page fault occurs and the first page of the program is brought in. Once control leaves this page (due either to running off the end or to a subroutine call) another fault occurs etc. Further, any access to data will also generate a fault.

b. Startup and post-swapped time can be slow

An implication of pure demand paging is that the initial startup of a new program may take a significant amount of time, since each page needed will require a disk access to get it. Likewise, if a process is ever swapped out of memory due to a long IO wait then when it is brought back in it will be paged in one page at a time.

c. No pages are brought into memory unnecessarily

The chief advantage of demand paging is that no pages are ever brought into memory unnecessarily. For example, if a program contains code for handling a large number of different kinds of input data, only the code needed for the actual data presented to it will ever be brought in.

3. Anticipatory or Pre-paging

Some systems combine demand paging with some form of anticipatory paging or pre-paging. Here, the idea is to bring a page in before it is accessed because it is felt that there is good reason to expect that it will be accessed. This will reduce the number of page faults a process generates, and thus speed up its startup at the expense of possibly wasting physical memory space on unneeded pages. Anticipatory paging becomes increasingly attractive as physical memory costs go down.

a. Pages known to be initially required can all be loaded at once

When initially loading a program, there may be a certain minimum set of pages that have to be accessed for program initialization before branching based on the input data begins to occur. These can all be read in at once.

b. All pages swapped out can later be swapped back in at once

If a process is totally swapped out during a long IO wait, then swap the whole set of pages that were swapped out back in when it is resumed instead of paging it back in a little bit at a time.

c. Structure of page device may make it advantageous to read several pages at once

Another form of anticipatory paging is based on the clustering of the paging device. If several pages reside in the same cluster on the paging device, then it may be advantageous to read all of them in if any one of them is demanded, since the added transfer time is only a small fraction of the total time needed for a disk access. This is especially advantageous if the pages correspond to logically-adjacent memory locations.

B. Page replacement policies: What page do we remove from memory?

Over time, the number of pages physically resident in memory on a system under any significant load will eventually equals the number of available frames. At this point, before any new page can be faulted in a currently resident page must be moved out to make room for it. The question of how to select a page to be replaced is a very important one. In general, there are two kinds of page replacement policies.

1. Global policies

When process X needs to fault in a new page, the set of

Candidates for replacement includes all pages belonging to all

Processes on the system. Note that unless a page belonging

to X already happens to be chosen, this will result in an

Increase in the total amount of physical memory allocated to

X.

2. Local policies

When process X needs to fault in a new page, the set of candidates for replacement includes only those pages currently belonging to process X. Note that this means that the total amount of physical memory allocated to X will not change.

3. In general, a system will have to incorporate both kinds of policy:

a. At startup, we must use a global policy

When a process is just starting up, a global policy will have to be used since the new process has few pages available as replacement candidates.

b. Local paging may be used to keep a particular process from using too much memory

Eventually, however, a local policy may have to be imposed to keep a given process from consuming too much of the system’s resources.

4. The working set of a process

Many of the policies to be discussed below can be applied either locally or globally. The notion of a process’s working set can be used to help decide whether the process should be allowed to grow by taking pages from other processes or should be required to page against itself.

a. The working set is the set of pages that a process has accessed in the time interval [T - T, T]
The working set for a process is defined in terms of some interval T back from the current time T. Building on the principle of locality of reference, it is assumed that this is a good approximation to the set of pages that the process must have physically resident in order to run for an interval T into the future without a page fault. (The interval T is chosen to keep the percentage of memory accesses resulting in a fault to an acceptable level. A time corresponding to around 10,000 memory accesses being a good rule of thumb.)

b. During the life of a process, there are times when the working set changes slowly and other times when it changes rapidly

Studies of the memory access behavior of processes show that typically there are periods of time during which the working set of a given process changes very little. During these periods, if sufficient physical memory is allocated to the process then it can page locally against itself with an acceptably low rate of page faults. These periods are separated by bursts of paging activity when the process’s working set is changing rapidly. These correspond to major stages in the program execution - e.g. the termination of one top level subroutine and the starting up of another. When this happens performance is improved if the global paging is used.

c. Maintaining a working set requires some system overhead

Of course, determining what the actual working set of a process is requires a certain amount of overhead - notably keeping track of what pages have been referenced during a past interval. (This is one of the places that a hardware referenced bit comes in.) One way to keep track of a process’s working set involves using a timer that interrupts at the chosen interval T:

· At the start of the interval, turn off all of the referenced bits in the page table for the currently running process.

· When the timer interrupts, include in the working set only those pages whose referenced bit is now on.

d. The working set concept can also be applied without going to all of the effort needed to determine the exact working set:

· If the page fault rate for a process lies within a certain empirically determined range, then assume that it has sufficient physical memory allocated to it to hold its (slowly evolving) working set and page it locally.

· If the page fault rate increases above the upper limit, assume its working set is expanding and page it globally, allowing its physical memory allocation to grow to keep pace with its presumably growing working set.

· If the page fault rate drops too low, then consider reducing its physical memory allocation by not only paging it against itself but also allowing other processes to take page frames from it. This corresponds to an assumption that the size of its working set is less than the amount of physical memory currently allocated to it.

5. We defer detailed discussion of page replacement policies until we briefly note one further issue.

C. The degree of memory over allocation.

1. It is unusual in today’s multi programmed systems for a single process to exceed the limits of the system’s physical memory

We have seen that, under a virtual memory system, it is possible for the logical memory allocated to any one process to exceed the amount of physical memory available. In practice, however, this does not often occur, since virtual memories systems are generally multi programmed and thus are configured with sufficient physical memory to allow portions of many processes to be resident at once.

2.
However, the sum of memory required by all processes on the system often exceeds the amount of physical memory

However, the sum total of the logical address spaces allocated to all the processes on the system will generally be far greater than the total amount of physical memory available. (If this were not so, then virtual memory would be of no benefit.) When memory is over allocated, each page faulted in will result in another page having to be moved out to make room for it. In general:

a.
Too little over allocation (or none at all)

This means that the resource of physical memory is not really being used well. Pages that could be moved out to the paging device without harm are being kept in physical memory needlessly.

b.
But too much over allocation can lead to a serious performance problem known as thrashing occurs when all of the pages that are memory resident are high-demand pages that will be referenced in the near future. Thus, when a page fault occurs, the page that is removed from memory will soon give rise to a new fault, which in turn removes a page that will soon give rise to a new fault ... In a system that is thrashing, a high percentage of the system’s resources is devoted to paging, and overall CPU utilization and throughput drop dramatically.

c.
The only way to prevent thrashing is to limit the number of processes that are actively competing for physical memory.

This can be done by using a form of intermediate scheduling, with certain processes being swapped out wholesale as in a non virtual memory system.

Ex: VMS has the concept of the balance set - which is the set of processes currently allowed to compete for physical memory. The size of the balance set is determined by the

criterion: sum total of the working sets of all processes in the balance set <= available physical memory

PAGING ALGORITHMS AND SEGMENTATION

Objectives

In the last lecture, you learnt about paging and segmentation
Which are two methods of implementing virtual memory? You
Also saw the advantages and disadvantages of these two
Methods. In this lecture, we will study about a method which is
the combination of paging and segmentation.

Paged Segmentation

In this model, the logical memory is composed of segments.
Each segment is composed of pages. The per process segment
Table is in memory pointed to by register. Entries map segment
Number to page table base. The page table is as described in the
previous lecture.

How is the mapping from the logical address to?
Physical address done in this combined approach?

The Logical address now consists of segment number, page
Number, and offset. The segment number is indexed into
Segment table to get base of page table. The page number is
Then used to index into page table to get the frame number.
The frame number is then concatenated with the offset to get
the physical address. The figure below gives an example of this
mapping.

What are the main advantages of this combined
approach?

The advantages stem out from the fact that it combines the
individual advantages of paging and segmentation.

· Reduces external fragmentation (due to paging within a
· segment)

· Multiple address spaces available (for various segments)

· Distinguishes between access violations and page faults

· Swapping can occur incrementally

· Instructions can have smaller address fields

What are the main disadvantages of this combined
approach?

· Two memory accesses per translation. First the SMT and
· then PMT.

· More tables to manage (SMT and PMT)

How can you minimize the memory access?

This can be done by providing something called as TLB
(Translation Look-aside Buffer). The TLB is like a cache. It
keeps the most recent translations. Only when there is a miss in
the TLB will the memory is accessed.

How does the TLB work?

When a reference to a page is made, the TLB is checked to see if
there is an entry. If yes, then the frame number is retrieved from
the TLB. If not, there is a TLB miss and the PMT is accessed. If
the page is in the PMT, then it is loaded from there into the
TLB and the physical address is computed. If the page is not
there in the PMT also, then a page fault occurs and the required
Page is retrieved from the virtual memory and loaded into the
PMT and then the TLB.

What is a page fault?

When a page is referenced and it is not in the PMT (and hence
in memory), then it needs to be fetched from the virtual
Memory. This is called as page fault.

INTRODUCTION TO INFORMATION

MANAGEMENT-CONCEPT OF FILE

STRUCTURES

· By going thru you will come across basic concepts related to
· files

· Basic file structures

· Various file operations

Introduction

Whatever the objectives of the applications, it involves the
generation and use of information. As you know the input of
the application is by means of a file, and in virtually all
Applications, output is saved in a file for long-term storage.
You should be aware of the objectives such as accessing of files,
saving the information and maintaining the integrity of the
contents, virtually all computer systems provide file management
services. Hence a file management system needs special
services from the operating system.

1.
Files

The following are the commonly discussed with respect to files:

· Field: Basic element of data. Its length and data type
· characterizes it. They can be of fixed or variable length.

· Record: Collection of related fields. Depending on the
· design, records may be of fixed or variable length. Ex: In
· sequential file organization the records are of fixed length
· where as in Line sequential file organization the records are
· of variable length.

· File: Collection of similar records and is referenced by name.

They have unique file names. Restrictions on access control
usually apply at the file level. But in some systems, such
controls are enforced at the record or even at the field level
also.

· Database: Collection of related data. The essential aspects of
· a database are that the relationships that exists among
· elements of data. The database itself consists of one or
· more types of files.

Files are managed by the operating system. How they are
structured, named, accessed, used, protected and implemented
are the major issues in operating system design. As a whole, the
part of the operating system deals with files is known as the file
system. The linked lists and bitmaps are used to keep track of
free storage and how many sectors there are in a logical block are
important to the designers of the file system.

1.1
File Naming: Files are an abstraction mechanism. The main
characteristic feature of abstraction mechanism is the way the
objects being managed are name. The exact rules for the file
naming vary from system to system, but all current operating
system allows strings of one to eight letters as legal file names.
Many file systems support names as long as 255 characters with
a distinguish in upper and lower case. Many operating systems
support two-part file names, with the two parts separated by a
period. The first part is called primary file name and the second
part is called secondary or extension file name.

1.2
File Structure: File can be structured in any of several ways.

Three common possibilities are depicted (a) is an unstructured
sequence of bytes (b) record sequence (c) tree structure.

a)
Unstructured sequence of bytes: It provide the maximum
flexibility. User programs can put anything they want in their
files and name them any way that is convenient.

b)
Record sequence: In this model, a file is a sequence of fixed
length records each with some internal structure. Central idea
of a file being a sequence of records is the idea that the read
operation returns and the write operation overwrites or
appends one record.

c)
Tree structure: In this organization, a file consists of a tree of
records, not necessarily all the same length, each containing a
key field in a fixed position in the record. The tree is sorted
on the key field, to allow rapid searching for a particular key.

File System components

· Device Drivers:

· Communicates directly with peripherals devices (disks,
· tapes, etc)

· Responsible for starting physical I/O operations on the
· device

· Processes the completion of an I/O request

· Schedule access to the device in order to optimize
· performance

· Basic File System:

· Uses the specific device driver

· Deals with blocks of data that are exchanged with the
· physical device

· Concerned with the placement of blocks on the disk

· Concerned with buffering blocks in main memory

· Logical File System

· Responsible for providing the previously discussed
· interface to the user including:

· File access

· Directory operations

· Security and protection.

File Types : Many operating systems support several types
of files. Unix and Windows, have regular files and directories.
Regular files are the ones that contain user information generally
in ASCII form. Directories are system files for maintaining the
Structure of the file system. Character special files are related to
input/output and used to model serial I/O devices such as
terminals, printers and networks. Block special files are used to
Model disks.

File Access: Early operating systems provided only one
kind of file access: sequential access. In these system, a process
could read all the bytes or records in a file in order, starting at
the beginning, but could not skip around and read them our of
order. Sequential files were convenient when the storage
medium was magnetic tape, rather than disk. Files whose bytes
or records can be read in any order are called random access files.
Two methods are used form specifying where to start reading.
In the first one, every read operation gives the position in the
file to start reading at. In the second one, a special operation,
seek, is provided to set the current position. This allows the
system to use different storage techniques for the two classes.
Where as in modern operating systems all the files are
automatically random access.

File Attributes: Every file has a name and its data. In
addition all operating systems associate other information with
each file such as the date and time the file was created and the
file’s size. The list of attributes varies considerably from system
to system. Attributes such as protection, password, creator and
owner tell who may access it and who may not. The flags are
bits or short fields that control or enable some specific property.
The record length, key, position and key length fields are only
present in files whose records can be looked up using a key. The
various times keep track of when the file was created, most
recently accessed and most recently modified. These are useful
for a variety of purpose. The current size tells how big the file is
at present.

· File operations: Files exist to store information and allow
· it to be retrieved later. Different systems provide different
· operations to allow storage and retrieval. The few of them of
· the most common system calls relating to files are:

· Create: The file is created with no data. The purpose of
· the call is to announce that the file is coming and to set some
· of the attributes.

· Delete: When the file is no longer needed, it has to be
· deleted to free up disk space.

· Open: Before using a file, a process must open, the
· purpose of the open call is to allow the system to fetch the
· attributes and list of disk addresses into main memory for
· rapid access on later calls.

· Close: When all the accesses are finished, the attributes
· and disk addresses are no longer needed, so the file should
· be closed to free up internal table space.

· Read: Data re read from file. Usually, the bytes a come
· from the current position. The caller must specify how much
· data are needed and must also provide a buffer to put them
· in.

· Write: Data are written to the file, again, usually at the
· current position. If the current position is end of the file
· then the file size gets increased.

· Append: This call is a restricted from of write. It can
· only add data to the end of the file.

· Seek: For random access files, a method is needed to
· specify from where to take the data.

· Get attributes: Processes often need to read file attributes
· to do their work.

· Set attributes: Some of the attributes are user settable
· and can be changed after the file has been created. This
· system call makes that possible. The protection mode
· information is an obvious example.

· Rename: It frequently happens that a user needs to
· change the name of an existing file.

Hardware

Operating System

Application Programs

USER

P1

P3

P2

7

3

16

0

P4

8

12

P1

P3

P2

4

2

11

0

P4

5

7

P2

P1

16

P1

P2

P3

P4

P1

P3

P4

P1

P3

P3

0

20

37

57

77

97

117

121

134

154

162

Pi

Pi

VISHAL EDUCATION INSTITUTION

(Regd. & ISO 9001-2008 Certified)

1

[image: image43.png]ready queue

1/0 queue

1/0 request

time slice
expired

child
executes

interrupt

occurs

fork a
child

wait for an
interrupt

[image: image44.png]process state
process number
program counter

registers

list of open files

[image: image45.png]admitted interrupt

scheduler dispatch /O or event wait

1/0 or event completion

[image: image46.png]

[image: image47.png]

[image: image48.png]

[image: image49.png]deadlock

[image: image50.png]

[image: image51.png]

